Abstract

A new chalcone derivative, (2E)-3-(2-chloro-4-fluorophenyl)-1-(3,4-dimethoxyphenyl)prop-2-en-1-one (a) was synthesized and single crystals were grown by slow evaporation technique. The FT-Raman and FT-IR spectra of the sample were recorded in the region 3500–100 cm−1 and 4000–400 cm−1 respectively. The spectra were interpreted with the aid of normal coordinate analysis, following structure optimizations and force field calculations based on B3LYP/6-31G (d) level of theory. Normal coordinate calculations were performed using the DFT force field corrected by a recommended set of scaling factors yielding fairly good agreement between the observed and calculated wavenumbers. The total electron density and molecular electrostatic potential surfaces of the molecule were constructed using B3LYP/6-31G (d) method to display electrostatic potential (electron + nuclei) distribution, molecular shape, size, and dipole moments of the molecule. HOMO and LUMO energies were also calculated. Stability of the molecule arising from hyperconjugative interactions and charge delocalization has been analyzed using natural bond orbital (NBO) analysis. Global and local reactivity descriptors and dipole moment (μ), static polarizability (α), first order hyperpolarizability (β) and optical gap (ΔE) were also calculated to study the NLO property of our title compound.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call