Abstract

A novel, unsymmetrical 1,1‘-disubstituted ferrocenediyl ligand, 1-(diphenylphosphino)-1‘-(methoxy)ferrocene (3), featuring phosphine and ether substituents has been synthesized via two different routes and structurally characterized. Its coordination chemistry was investigated by reaction with Rh(I), Cu(I), and group 10 metal precursors. With Ni(II) precursors, chelating complexes are formed in high yield, whereas with Pd(II) and Pt(II) precursors, either chelating complexes or monodentate bis ligand complexes with trans phosphorus ligation may be formed depending on the reaction conditions and metal precursor employed. A similar monodentate trans phosphorus-ligated complex is observed with Rh(I), whereas with Cu(I) precursors, a phosphorus-ligated monodentate bis ligand complex with a coordinated acetonitrile was obtained. Preliminary studies show that 3, in combination with either Pd(II) or Pd(0) precursors, can act as a catalyst for the Suzuki coupling reaction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call