Abstract
A range of N-donor ligands based on the 1H-pyridin-(2E)-ylidene (PYE) motif have been prepared, including achiral and chiral examples. The ligands incorporate one to three PYE groups that coordinate to a metal through the exocyclic nitrogen atom of each PYE moiety, and the resulting metal complexes have been characterised by methods including single-crystal X-ray diffraction and NMR spectroscopy to examine metal-ligand bonding and ligand dynamics. Upon coordination of a PYE ligand to a proton or metal-complex fragment, the solid-state structures, NMR spectroscopy and DFT studies indicate that charge redistribution occurs within the PYE heterocyclic ring to give a contribution from a pyridinium-amido-type resonance structure. Additional IR spectroscopy and computational studies suggest that PYE ligands are strong donor ligands. NMR spectroscopy shows that for metal complexes there is restricted motion about the exocyclic C-N bond, which projects the heterocyclic N-substituent in the vicinity of the metal atom causing restricted motion in chelating-ligand derivatives. Solid-state structures and DFT calculations also show significant steric congestion and secondary metal-ligand interactions between the metal and ligand C-H bonds.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.