Abstract

Rotationally fixed [3]ferrocenophane extends the variety of possible molecular geometries in its derivatives in comparison with unbridged ferrocenes. In this respect molecular geometry–liquid crystalline properties relationship studies in [3]ferrocenophane mesogens are of considerable interest. Different positional isomers of mono- and di-substituted [3]ferrocenophanes which are obtained by incorporating one or two promesogenic building blocks into the cyclopentadienyl rings are reported in this article. A series of mono-substituted [3]ferrocenophane-containing Schiff’s bases was synthesized by condensing isomeric p-aminophenyl [3]ferrocenophanes with appropriate aldehydes. Isomers of di-substituted [3]ferrocenophane amines gave rise to a series of azomethines with two promesogenic substituents in the cyclopentadienyl rings. Besides, a β-enaminoketone was prepared from 3-( p-aminophenyl)[3]ferrocenophane. Nematic and smectic mesophases were observed in the synthesized compounds under a polarizing optical microscope. The [3]ferrocenophane-containing β-enaminoketone showed complex mesomorphic behaviour connected with occurrence of the keto-enamine and imino-enol tautomeric equilibrium in this compound. On the base of computational models obtained by semi-empirical quantum chemistry calculations the molecular geometry–phase behaviour relationships were examined. It was demonstrated that mesomorphism of [3]ferocenophane azomethines depends on the spatial orientation of the substituents with respect to the propanediyl bridge in a case of mono-, and as well as to each other in a case of di-substituted derivatives.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.