Abstract

Novel copolymeric gels of poly(AMPS–TEA-co-AAm) with superabsorbency in both water and alcohols were synthesized by neutralizing 2-acrylamido-2-methyl-1-propane sulfonic acid (AMPS) with triethylamine (TEA) followed by copolymerizing the resulted salt with acrylamide (AAm) in aqueous solutions using N,N′-methylenebisacrylamide (MBAm) as a crosslinker, and ammonium persulfate (APS) as an initiator. By swelling the xerogel of poly(AMPS–TEA-co-AAm) in the drug solution followed by removing the solvent to give drug-polymer conjugate, the incorporation of a model drug, chloramphenicol, into the gels was investigated by using water and alcohols as solvent, respectively. The in vitro drug release profile of the drug-polymer conjugate was investigated in PBS. The results showed that poly(AMPS–TEA-co-AAm) gels exhibited superabsorbency in both water and a series of alcohols; and the alcohol-facilitated uploading of chloramphenicol into the gels was much greater than that achieved in water. The poly(AMPS–TEA-co-AAm) gels exhibited a similar drug release profile with conventional hydrogels; and only part of the drug uptaken by the gels was released as a result of poor aqueous solubility of chloramphenicol.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.