Abstract

BackgroundDue to their interesting and versatile biological activity, thiophene-containing compounds have attracted the attention of both chemists and medicinal chemists. Some of these compounds have anticancer, antibacterial, antiviral, and antioxidant activity. In addition, the thiophene nucleus has been used in the synthesis of a variety of heterocyclic compounds.ResultsIn the present work, two novel thiophene-containing compounds, 4-phenyl-2-phenylamino-5-(1H-1,3-a,8-triaza-cyclopenta[α]inden-2-yl)-thiophene-3-carboxylic acid ethyl ester (3) and 5-(1H-Imidazo[1,2-b] [1,2,4] triazol-5-yl)-4-phenyl-2-phenylamino-thiophene-3-carboxylic acid ethyl ester (4), have been synthesized by reaction of 5-(2-bromo-acetyl)-4-phenyl-2-phenylaminothiophene-3-carboxylic acid ethyl ester (2) with 2-aminobenzimidazole and 3-amino-1H-1,2,4-triazole in the presence of triethylamine, respectively. Compound 2, on the other hand, was prepared by bromination of 5-acetyl-4-phenyl-2-phenylaminothiophene-3-carboxylic acid ester (1). Structures of the newly prepared compounds were confirmed by different spectroscopic methods such as 1H-NMR, 13C-NMR, and mass spectrometry, as well as by elemental analysis. Furthermore, bromination of compound 1 led to the formation of two constitutional isomers (2a and 2b) that were obtained in an 80:20 ratio. Molecular structures of 2b were confirmed with the aid of X-ray crystallography. Compound 2 was crystallized in the triclinic, P-1, a = 8.8152 (8) Å, b = 10.0958 (9) Å, c = 12.6892 (10) Å, α = 68.549 (5)°, β = 81.667 (5)°, γ = 68.229 (5)°, V = 976.04 (15) Å3, Z = 2, and was found in two isomeric forms regarding the position of the bromine atom. The antibacterial and antifungal activities of the prepared compounds were evaluated.ConclusionsThree new thiophene derivatives were synthesized in good yield. Antimicrobial screening revealed that compound 3 was a promising candidate as a potential antibacterial and antifungal agent; it exhibits remarkable activity against the studied bacterial strains, especially the gram negative bacteria E. coli in addition to some fungi. More work is needed to evaluate its safety and efficacy.

Highlights

  • Due to their interesting and versatile biological activity, thiophene-containing compounds have attracted the attention of both chemists and medicinal chemists

  • Chemistry Shown in Scheme 1 are reactions involved in the synthesis of compounds 2, 3, and 4. 5-Acetyl-4-methyl2-phenylamino-thiophene-3-carboxylic acid ethyl ester (2), a synthone required in this work, was prepared and characterized according to a procedure outlined by Mabkhot et al [13] that involved stirring a mixture of ethyl acetoacetate and anhydrous potassium carbonate followed by addition of phenyl isocyanate and chloroacetone

  • Antimicrobial activity In vitro antibacterial screening tests of the newly synthesized compounds were performed against four bacterial strains: two Gram-positive (Streptococcus pneumonia and Bacillis subtilis) and two Gram-negative (P. aeruginosa and E. coli) in addition to four different fungi; A. fumigates, S. racemosum, G. candidum, and C. albicans

Read more

Summary

Results

Two novel thiophene-containing compounds, 4-phenyl-2-phenylamino-5-(1H-1,3-a,8triaza-cyclopenta[α]inden-2-yl)-thiophene-3-carboxylic acid ethyl ester (3) and 5-(1H-Imidazo[1,2-b] [1,2,4] triazol5-yl)-4-phenyl-2-phenylamino-thiophene-3-carboxylic acid ethyl ester (4), have been synthesized by reaction of 5-(2-bromo-acetyl)-4-phenyl-2-phenylaminothiophene-3-carboxylic acid ethyl ester (2) with 2-aminobenzimidazole and 3-amino-1H-1,2,4-triazole in the presence of triethylamine, respectively. Compound 2, on the other hand, was prepared by bromination of 5-acetyl-4-phenyl-2-phenylaminothiophene-3-carboxylic acid ester (1). Structures of the newly prepared compounds were confirmed by different spectroscopic methods such as 1H-NMR, 13C-NMR, and mass spectrometry, as well as by elemental analysis. Bromination of compound 1 led to the formation of two constitutional isomers (2a and 2b) that were obtained in an 80:20 ratio. Compound 2 was crystallized in the triclinic, P-1, a = 8.8152 (8) Å, b = 10.0958 (9) Å, c = 12.6892 (10) Å, α = 68.549 (5)°, β = 81.667 (5)°, γ = 68.229 (5)°, V = 976.04 (15) Å3, Z = 2, and was found in two isomeric forms regarding the position of the bromine atom. The antibacterial and antifungal activities of the prepared compounds were evaluated

Conclusions
Background
Results and discussion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call