Abstract
Biodegradable polymer materials are attractive in various biomedical applications. Herein, we report a block aliphatic copolymer, polycaprolactone-block-polyglycolide (PCL-b-PGA, denoted as PCLGA), and explored the polymer composition effect on the thermal and degradation behaviors. Three copolymers with different PCL/PGA weight ratios were obtained by a two-step ring opening polymerization. The chemical structures and compositions of copolymers were studied by NMR and FT-IR. The thermal behaviors were investigated by DSC and TGA. The in vitro degradation in phosphate buffer saline and in vivo degradation as an implant in rats were evaluated and the hygroscopic rate and polymer weight loss changes were monitored in an eight-week period. PCLGA with a higher PCL composition showed a slower degradation in vitro and in vivo. These PCLGAs with different degradation rates could be used as biomedical implants for potential application in drug delivery and tissue repair.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.