Abstract

The free-base meso-tetra(4-pyridylvinylphenyl)porphyrin (1a) and its zinc(II) complex were synthesized and then functionalized with [Ru(bpy)2Cl]+ units (2a and 2b) via conventional methods and evaluated in terms of photophysical, electrochemical and biological aspects. All porphyrins present moderate singlet oxygen production and fluorescence quantum yield, and did not show any aggregation process. The photo-oxidation ability of those porphyrins decreased in the order 2b > 1a > 2a. The electrochemical behavior of 2a and 2b modified electrodes was evaluated by electroanalytical methods. Also the 2b electrode showed a smaller charge transfer resistance (36.70 Ω) when compared to 2a electrode (45.17 Ω). In addition, even after 30 consecutive injections of nitrite solution (1.0 × 10−4 mol L−1) using the flow injection analysis (FIA) system, the modified 2b electrode showed an relative standard deviation (RSD, n = 30) of 1.36% exhibiting a great potential as amperometric sensor for nitrite. Moreover, the biological evaluation towards human serum albumin (HSA) indicated spontaneous, weak and ground-state association in the IB subdomain (site III) and possibily a second site, changing the conventional interaction mode of porphyrins with biomolecules as consequence of the longer arms (porphyrin ring substituents at meso-positions) ending with a ruthenium polypyridyl complex, that may enhance the photodynamic therapy (PDT) efficiency of photogenerated reactive oxygen species (ROS) species.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.