Abstract

In this study, we investigated the antifungal activity and cytotoxicity of ZnO-chitosan nanocomposites (ZnO-C NCs) against Candida albicans and human epithelial type 2 (HEp2) cells, respectively. The crystalline phase, morphology, composition, particle size and optical absorption properties of the synthesized ZnO-C NCs were systematically investigated by various contemporary methods. The X-ray diffraction analysis results showed characteristic diffraction peaks corresponding to both ZnO and chitosan, while field-emission scanning electron microscopy (FESEM) displayed clusters of spherical shaped particulate morphology. UV–vis absorption spectra showed a shift in the optical absorption towards lower wavelength for ZnO-C NCs when compared to ZnO nanoparticles (NPs). The antifungal activity results (against C. albicans) showed that the minimum inhibitory concentration of ZnO NPs and ZnO-C NCs were 200μg/mL and 75μg/mL, respectively, suggesting the greater therapeutic potential of ZnO-C NCs. FESEM analysis results showed the substantial change in the external morphology of C. albicans after treatment with both ZnO NPs and ZnO-C NCs due to the fungal cell membrane damage. ZnO-C NCs displayed lower cytotoxicity with HEp2 cells indicating the good cytocompatibility of the synthesized ZnO-C NCs. It is expected that ZnO and chitosan complement each other and exhibit synergistic effects potential for antimicrobial and biomedical applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.