Abstract

A series of titanium rich isomorphous substituted Ti MCM-41 and HMS materials have been synthesized with different Si/Ti ratios. The highest amount of Ti incorporated in synthesis gel is in TiMCM-41 (Si/Ti = 10). Whereas for TiHMS catalysts, Ti is incorporated up to Si/Ti = 50 successfully without forming any extra framework TiO2. Cyclohexene epoxidation reaction with dry tert-butyl hydroperoxide (TBHP) as an oxidant has been studied to evaluate the catalytic properties of Ti substituted mesoporous catalysts. The effect of molar ratio of substrate:oxidant in this reaction has been studied and high conversion, high selectivity were achieved at 2: 1 molar ratio with TiMCM-41 (Si/Ti =25). Dry TBHP (in dichloromethane) and chloroform were found as good oxidant and solvent system for this reaction. Pure siliceous mesoporous silica and low `Ti' substituted mesoporous silicas were found to be efficient catalysts for oxidation of cyclohexene. An interesting variation of the selectivity from allylic oxidation to epoxidation during oxidation of cyclohexene was observed with an increase in the Ti amount in the mesoporous framework. The allylic oxidation of cyclohexene has been carried out using molecular oxygen as an oxidant and in the presence of a small amount of TBHP as initiator. Siliceous HMS materials gave better conversion compared to MCM-41 type of materials and other conventional silicas like silica gel, fumed silica etc. in allylic oxidation of cyclohexene. Epoxidation of higher cyclic olefins like cyclooctene, cyclododecene, cis-cyclododecene and linear olefins 1-Heptene, cis-2-hexene, 1-undecene was carried out over TiMCM-41 (Si/Ti = 25). Ti substituted mesoporous catalysts were characterized by elemental analysis, XRD, FTIR, UVDRS, 29SiMASNMR, BET surface area and pore size distribution techniques.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.