Abstract

A series of lanthanide amide complexes supported by bridged bis(amidinate) ligand L, LLnNHAr(1)(DME) (L = [Me(3)SiNC(Ph)N(CH(2))(3)NC(Ph)NSiMe(3)], Ar(1) = 2,6-(i)Pr(2)C(6)H(3), DME = dimethoxyethane, Ln = Y (1), Pr (2), Nd (3), Gd (4), Yb (5)), [Yb(μ(2)-NHPh)](2)(μ(2)-L)(2) (6) and [LYb](2)(μ(2)-NHAr(2))(2) (7) (Ar(2) = (o-OMe)C(6)H(4)), were synthesized by reaction of LLnCl(THF)(2) with the corresponding lithium amide in good yields and structurally characterized by X-ray crystal structure analyses. All complexes were found to be precatalysts for the catalytic addition of aromatic amines to aromatic nitriles to give monosubstituted N-arylamidines. The catalytic activity was influenced by lanthanide metals and the amido groups with the active sequence of Y (1) < Gd (4) < Nd (3) < Pr (2) ∼ Yb (5) for the lanthanide metals and -NHAr(2) < -NHPh < -NHAr(1) for the amido groups. The catalytic addition reaction with complex 5 showed a good scope of aromatic amines. Some key reaction intermediates were isolated and structurally characterized, including the amidinate complexes LLn[NPhCNAr(1)](PhCN) (Ln = Y (8), Ln = Yb (9)), LYb[NAr(2)CNAr(1)](Ar(2)CN) (10), and amide complex 5 prepared by protonation of 9 by Ar(1)NH(2). Reactivity studies of these complexes suggest that the present catalytic formation of monosubstituted N-arylamidines proceeds through nucleophilic addition of an amido species to a nitrile, followed by amine protonolysis of the resultant amidinate species.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.