Abstract

Epoxy resins were cured by an amine telechelic poly(tetramethylene oxide) (PTMO). The telechelic amine was synthesized from hydroxy telechelic PTMO and was characterized. The kinetics of curing of epoxy monomer by the polyether amine was studied in detail by differential scanning calorimetry (DSC) and rheology to optimize the cure conditions. The cured epoxy system exhibited shape memory properties where PTMO served as the switching segment. Molar ratios of the epoxy monomer and the amine were varied to get polymers with different compositions. The developed polymers were analyzed by DSC, X‐ray diffraction, and Dynamic Mechanical Thermal (DMTA) analyses. Shape memory property was evaluated by bending tests. As the concentration of epoxy resin increased, the transition temperature (Ttrans) increased. The tensile strength and % elongation also increased with epoxy resin‐content. The extent of shape recovery increased with PTMO‐content with a minor penalty in recovery time. The polymer with the maximum PTMO‐content exhibited 99% shape recovery with a recovering time of 12 s.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call