Abstract

Five zinc(II) complexes, [Zn(L1)2] (1), [Zn(L1)2(phen)H2O]·H2O (2), [Zn(L1)2(bipy)] (3), [Zn(L2)2] (4), and [Zn(L2)2(phen)] (5) (where L1 = 4-nitrophenylacetate, L2 = phenylacetate, phen = 1,10-phenanthroline and bipy = 2,2′-bipyridine), have been synthesized and characterized by elemental analysis, FT-IR, and multinuclear NMR. Complexes 2, 3, and 4 have been confirmed by single-crystal X-ray diffraction. In 2 and 3, zinc is bonded monodentate to two carboxylates exhibiting distorted trigonal bipyramidal and tetrahedral geometries, respectively, whereas in 4, the carboxylates are bridging bidentate in distorted tetrahedral geometry. The complexes have been screened for electro- and biological activities, including DNA interaction and enzyme inhibition studies. The effect of concentration of 1–5 on the activity of enzyme, alkaline phosphatase, showed that an increase in concentration of complex decreased the activity of the enzyme. Electrochemical behavior of HL1, 2, and 3 was investigated by cyclic voltammetry and it was observed that ligand-centered electro-activity exhibits a proportionate change on complexation. The UV–visible spectroscopic and viscometric data indicate electrostatic and groove binding of the complexes with DNA. The binding constant and Gibb’s free energy values indicate the feasibility of the complex–DNA interaction and show potent biological activity of the complexes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call