Abstract

Heptamethyl (aquo)(pentafluorophenylthiolate)cobyrinate perchlorate, [(H2O)(C6F5S)Cob(III)7C1ester]ClO4, was synthesized as a B12 model complex having a thiolate ligand in the axial position. The axial ligand change in heptamethyl (diaquo)cobyrinate diperchlorate, [(H2O)2Cob(III)7C1ester](ClO4)2, from H2O to C6F5S(-) afforded the B12-thiolate complex. The B12-thiolate model complex was characterized by UV-vis, NMR and ESI-mass spectroscopies. The coordination of C6F5S(-) to the cobalt center affected the spectroscopic properties of the corrin ring through the electronic interaction between the axial ligand (C6F5S(-)) and the equatorial ligand (corrin). The photolysis of the B12-thiolate model complex led to the homolytic cleavage of the Co(iii)-S bond to form the Co(II) complex and the phenyl thiyl radical. The thermolysis of the B12-thiolate model complex also led to the homolytic cleavage of the Co(III)-S bond. Furthermore, the reactivity of the Co(III)-S bond of the B12-thiolate model complex was applied to the catalytic oxidation of C6F5SH to C6F5S-SC6F5.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.