Abstract
Air-stable phosphite-ligated platinum complexes of the form cis-Pt(P(OR)3)2Cl2 and cis-Pt(P(OR)3)2Me2 based on five small alkyl phosphite ligands have been synthesized and characterized. The crystal structures for several of these species are reported, allowing for comparison between spectroscopic and structural parameters. Michaelis-Arbuzov-type dealkylation during synthesis was observed for some of the phosphite ligands, and a dealkylated product was structurally characterized. Density Functional Theory (DFT) and Quantum Theory of Atoms in Molecules (QTAIM) was also used to examine the electronic structure of the phosphite compounds. The QTAIM results support the increased π-acidity of the phosphite ligands compared to analogous phosphines. Thermolysis experiments were performed to examine the stability and reactivity of Pt(P(OR)3)2X2 species. It was found that coordinated P(OiPr)3 ligands decompose via cyclometallation and propylene extrusion.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.