Abstract

The new Schiff base ligand 2,2′-{(4-chloro-1,2-phenylene)bis(nitrilo(E)methylylidene)}bis(4-bromophenol) (H 2 L) and its VO(II), Zn(II) and ZrO(II) metal chelates have been synthesized and characterized by spectral, powder x-ray diffraction (PXRD), molar conductance, magnetic measurements, thermal and elemental analyses. The molecular geometry of the prepared compounds has been confirmed by applying the theoretical density functional theory calculations (DFT). The analytical data showed that the parent azomethine H 2 L ligand binds to the VO(II), Zn(II) and ZrO(II) ions through both of the two azomethine-N and two phenolic-O groups and adopts distorted octahedral geometry for ZnL(H 2 O) 2 chelate while square pyramidal geometries for VOL and ZrOL chelates. The antioxidant activity of the compounds was also evaluated by using 1,1‐diphenyl‐2‐picrylhydrazyl (DDPH) reduction method and compared with the positive control ascorbic acid. Carcinoma cells such as breast (MCF-7), liver (Hep-G2), colon (HCT-116) carcinoma cell lines and human embryonic kidney 293 cells (HEK-293) were used for in vitro cell proliferation to investigate the anticancer potency of the prepared compounds. The results showed that, the tumor growth is inhibited and dose-dependent according to the following order: VOL > ZrOL > ZnL(H 2 O) 2 > H 2 L. The titled compounds have been also tested for their antimicrobial activity against certain pathogenic bacteria and fungi. The results showed that the H 2 L ligand and its complexes has enhanced antibacterial and antifungal activities. The CT-DNA binding experiments of azomethine chelates showed that, the binding modes are intercalative, and the determined intrinsic binding constants (K b ) for the VOL, ZrOL, ZnL(H 2 O) 2 complexes, are in the range 6.1–7.8 × 10 5 mol −1 dm −3 . The docking calculations were performed to probe the nature of binding affinity of the synthesized compounds with human DNA (PDB:1bna). The compounds may be applicable orally in an accurate manner, according to their in-silico intake, delivery, metabolic processes, digestion, and toxic effects (ADME) data.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call