Abstract

Nosocomial infections are among the major public health concerns, especially during the ongoing Covid19 pandemic. There is a great demand for novel chemical agents that are capable of killing specific pathogens or augmenting the efficiency of existing disinfectants. Herein, we report the synthesis and comprehensive characterization (through FT-IR, HR-MS, SEM, TGA-DSC, CV, UV and SCXRD analyses) of six novel copper(II) complexes, [CuL(4X-An)] (5a-5d), [CuL(An)] (5e), and [CuL(benzhydrylamine)] (5f), and their evaluation as anti-microbial agents against WHO priority pathogens, confirming their possible use in hospital settings. The compounds were synthesized with a Schiff base (H2L) obtained by the condensation reaction of 3-acetyl-6-methyl-2H-pyran-2,4(3H)-dione (DHA) and benzohydrazide and further addition of different p-substituted aniline (An) molecules. Single crystal structure analyses revealed that the aniline derivatives are isostructural to the copper atom in a square planar coordination, while the benzhydrylamine complex forms a dimer (5f), with a square pyramidal coordination geometry for the metal. Time-kill kinetics and reduced microbial recovery studies revealed excellent bactericidal action against Staphylococcus aureus and Enterococcus faecalis. Particularly, the novel compound 5f significantly reduced microbial recovery compared to ethanol-based sanitisers. In fact, addition of 5f to 70% ethanol remarkably synergized the killing with >6-log reduction in microbial burden. Overall, our novel compounds would increase the disinfection efficacy in hospitals and industries, thereby improving the efficiency and minimizing the risk of infections.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call