Abstract
A new organic-inorganic hybrid salt pipéridinium trans-diaquabis(oxalato)- chromate(III) tetrahydrate, (C5H10NH2)[Cr(C2O4)2(H2O)2]·4H2O (1), has been synthesized in water and characterized by FTIR and UV-Vis spectroscopies, elemental and thermal analyses and by single-crystal X-ray diffraction. 1 crystallizes in the orthorhombic non-centrosymmetric space group Cmc21 with the unit cell parameters a = 7.4329(3), b = 9.9356(5), c = 23.6756(11) Å, α = β = γ = 90°, V = 1748.45(14) Å3 and Z = 4. The structure of 1 consists of [Cr(C2O4)2(H2O)2]- mononuclear anions, piperidinium cations and uncoordinated water molecules. The CrIII ion in the complex [Cr(C2O4)2(H2O)2]- is coordinated in a slightly distorted octahedral environment by four O atoms from two chelating oxalate dianions in the equatorial plane, and two O atoms from trans-coordinated water molecules occupying the apical positions. In the crystal, N-H···O and O-H···O hydrogen bond interactions connect the components into a 3-D framework. The IR spectrum of 1 is consistent with the presence of the various molecular building constituents, namely oxalato and aqua ligands, piperidinium cations and solvent water molecules. The UV-Vis spectrum shows two absorption bands around 564 and 416 nm which are compatible with an anionic chromium(III) complex in an octahedral environment. Thermal analysis shows a three-step decomposition of 1, leading to formation of a metal oxide residue.
Highlights
A great interest has been paid to the synthesis of novel organic-inorganic hybrid salt due to their structural diversity [1] and potential applications in gas storage [2], ion exchange and catalysis [3], photoluminescence [4] [5] and magnetism [6]
In continuation of the systematic search for other members of this family of materials, we report the synthesis, characterization and thermal analysis of a new organic-inorganic hybrid salt, piperidinium trans-diaquabis(oxalatoκ2O1,O2)chromate(III) tetrahydrate, (C5H10NH2)[Cr(C2O4)2(H2O)2]∙4H2O (1)
Packing diagram of 1, viewed along the b axis, showing its layered structure formed of pillars of alternating [Cr(C2O4)2(H2O)2]– complex anions and piperidinium (C5H10NH2)+ cations plus H2O molecules of crystallization (Figure 5)
Summary
A great interest has been paid to the synthesis of novel organic-inorganic hybrid salt due to their structural diversity [1] and potential applications in gas storage [2], ion exchange and catalysis [3], photoluminescence [4] [5] and magnetism [6] In this respect, the diaquabis(oxalato)metalate(III) complex anions, [MIII(C2O4)2(H2O)2]−, have been extensively used as building blocks for the generation of multifunctional materials formed by two distinct molecular networks, each furnishing a particular structural and physical property [7] [8] [9] [10]. Two aspects of focal relevance are associated with 1: a) its framework is non-centrosymmetric; b) the number of solvent water molecules per formula unit seems to be the highest obtained so far for this family of bis(oxalato)metalate(III) salts
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.