Abstract
The reactions of unsymmetric phosphorus ylides of the type [Ph2P(CH2)nPPh2C(H)C(O)C6H4‐p‐CN] (n = 1 (Y1); n = 2 (Y2)) with C60 and M(dba)2 (M = Pd or Pt; dba = dibenzylideneacetone) are reported. Based on the various coordination modes of these ylides in complexation, the following new Pd/Pt–cyclopropa[60]fullerene complexes were obtained: P,C‐coordinated [(η2‐C60)Pd(κ2‐Y1)] (1) and [(η2‐C60)Pt(κ2‐Y1)] (2) complexes and P‐coordinated [(η2‐C60)Pd(Y2)2] (3) and [(η2‐C60)Pt(Y2)2] (4) complexes. These compounds were characterized using Fourier transform infrared, UV–visible and NMR (1H, 13C and 31P) spectroscopies and scanning electron microscopy. Furthermore, cytotoxicity studies showed that nanoparticles of these complexes can be used as non‐toxic labels for cellular imaging application. Also energy decomposition analysis results revealed that the percentage contribution of ΔEelec in total interaction energy is considerably larger than that of ΔEorb. Thus, in all complexes the (η2‐C60)M(Y1) bond is considerably more electrostatic in nature than the (η2‐C60)M(Y1) bond. Finally, by application of the Taguchi method for optimization of parameters in Suzuki–Miyaura reaction, the catalytic activity of Pd complexes 1 and 3 was investigated in the cross‐coupling reaction of various aryl chlorides with phenylboronic acid. According to analysis of variance results, solvent has the highest F value and it has high contribution percentage (36.75%) to the yield of Suzuki–Miyaura reaction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.