Abstract
Platinum and palladium dendrimer-encapsulated nanoparticles (DENs) were prepared within commercially available, fourth-generation, amine-terminated, poly(amidoamine) dendrimers (G4-NH2). The synthesis is carried out by selectively encapsulating metal complexes within the dendrimer and then reducing the resulting composite. Intradendrimer complexation requires control over the solution pH to prevent attachment of the metal complexes to primary amine groups on the dendrimer periphery. That is, the surface primary amines of the dendrimer must be selectively protonated in the presence of the interior tertiary amines. The metal-ion encapsulation and reduction processes were characterized by UV-vis spectroscopy. Forty-atom Pt and Pd DENs were examined by high-resolution transmission electron microscopy, which showed that the mean particle sizes were 1.4 and 1.5 nm, respectively, and that both were nearly monodisperse (standard deviation = 0.3 nm). The free amine groups on the dendrimer surface were used to link Pd DENs to monolithic Au surfaces via an intermediate self-assembled monolayer adhesion layer.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.