Abstract

BackgroundPackaging of locust beans is done to prevent deterioration and promote its shelf-life. This research was carried out to develop and evaluate a cocoyam starch-banana peels nanocomposite film for locust beans packaging. The film was prepared by gelatinizing a mixture of 0.36 g banana peels nanoparticles (~ 1.14–1.64 nm), 18 g cocoyam starch, and 18 ml glycerol in 300 ml distilled water at 90 °C. The thermal, structural, mechanical and barrier properties of the film were determined using standard procedures. A 100 g of the locust beans condiment was packaged using the film and compared with packaging in a low-density polyethylene (LDPE) at 5.16–7.58 pH and 16.67–11.50% moisture ranges.ResultsResults indicate approx. 3% weight loss with an increase in temperature (≤ 250 °C). The heat of decomposition in the process was 4.64 J/g, which depended on the transition temperature. Also, the film has high stiffness and creep along the line of topography in the atomic force imaging. The material permeates more to CO2 (27%) and H2 (67%) but has a low O2 (4%) and N2 (1%) gas permeabilities. The size of particles in the film was in the range of 3.52–3.92 nm, which is distributed across its matrix to create the pores needed to balance the gases in the micro-atmosphere. The microbial load of the locust beans decreased with pH and increased with moisture, but this was generally lower compared to those packaged in the LDPE at p < 0.05.ConclusionsThe film was a better packaging material than the LDPE since it recorded lower counts of the microbes throughout the storage. Thus, the nanocomposite film was effective in controlling the microbial growth of the locust beans irrespective of the sample moisture and pH over the 30 days packaging duration.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.