Abstract

Mg-Al layered double hydroxides (LDHs) containing chloride (LDH-Cl) or carbonate (LDH-CO(3)) in the interlayer were obtained at room temperature and after calcitation at 450 degrees C (LDH-Cl-450 and LDH-CO(3)-450) and were characterized by X-ray diffraction and Fourier transform infrared analyses. Sorption isotherms of a humic acidlike fraction naturally occurring in olive oil mill waste waters, named polymerin, on these LDH minerals were carried out. Because LDH-CO(3) showed the highest capacity to sorb polymerin among the four LDH minerals synthesized, two organo-mineral complexes named LDH-CO(3)-LP (low polymerin) and LDH-CO(3)-HP (high polymerin) were prepared by coprecipitation (LDH-CO(3)-LP) and sorption onto a preformed LDH-CO(3) mineral (LDH-CO(3)-HP). These complexes were characterized chemically and physicochemically, and their stability to pH and after thermal treatment at 80 degrees C were evaluated. The diffuse reflectance infrared Fourier transform and X-ray analysis of the complexes indicated that polymerin was sorbed only on the external surfaces of LDH-CO(3) and no intercalation occurred. The LDH-polymerin complexes appeared to be more stable than LDH-CO(3) at pH 4.0 and showed that they were able to sorb both As(V) and Zn. Because the waste waters are usually contaminated with mixtures of pollutants in cationic and anionic forms, the LDH-polymerin complexes appear more suitable than the sorbents in a potential water remediation process.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call