Abstract

A new di-block acrylate copolymer with a Copper-Phthalocyanine (CuPc) core has been synthesized via a multi-step reaction scheme involving the atom-transfer radical polymerization. This material displayed amphiphilic character and consists of a CuPc core with eight copolymer arms. This new amphiphilic material and related intermediates have been characterized by UV-Vis, FT-IR, 1H-NMR and elemental analysis. A preliminary study involving self-assembly properties of this material by optical, atomic force and scanning electron microscopies is presented.

Highlights

  • In the past decade, the synthesis of functional nano-architectures, aimed at developing electronic and photonic nano-devices to perform specific functions, such as catalysis, chemical sensing, electrical conductivity, photodynamic therapy, etc., has been an intense area of research [1,2,3,4,5,6,7,8,9,10]

  • A new di-block acrylate copolymer with a Copper-Phthalocyanine (CuPc) core has been synthesized via a multi-step reaction scheme involving the atom-transfer radical polymerization

  • This material displayed amphiphilic character and consists of a CuPc core with eight copolymer arms. This new amphiphilic material and related intermediates have been characterized by UV-Vis, Fourier-Transform Infrared spectroscopy (FT-IR), 1H-NMR and elemental analysis

Read more

Summary

Introduction

The synthesis of functional nano-architectures, aimed at developing electronic and photonic nano-devices to perform specific functions, such as catalysis, chemical sensing, electrical conductivity, photodynamic therapy, etc., has been an intense area of research [1,2,3,4,5,6,7,8,9,10]. A new di-block acrylate copolymer with a Copper-Phthalocyanine (CuPc) core has been synthesized via a multi-step reaction scheme involving the atom-transfer radical polymerization. We report here the synthesis and characterization of a new di-block acrylate copolymer with CuPc core, having a distinct hydrophobic segment composed of tert-Butyl Acrylate (tBA) units, and a hydrophilic segment having Tri(Ethylene Glycol)Monomethyl Ether Acrylate (TEGA) units.

Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call