Abstract

The organotin monomer di(tri-n-butyltin) citraconate (DTBTC, I) was synthesized. Subsequently this monomer was copolymerized with N-vinylimidazole (VI) using a free radical technique. The overall conversion was kept low (≤14% wt/wt) for all studied samples and the copolymer composition was determined from tin analysis using the Gilman and Rosenberg method. The synthesized monomer and copolymer were further characterized by elemental analysis, 1H- and 13C-NMR, and FTIR spectroscopy.

Highlights

  • A copolymer’s composition is an important factor in the evaluation of its utility [1,2,3,4]

  • The purity of the prepared monomer was checked by Thin Layer Chromatography (TLC) using chloroform as eluant

  • The organotin monomer, di(tri-n-butyltin) citraconate (DTBTC, I) was synthesized. This monomer was copolymerized with N-vinylimidazole (VI) via a free radical technique

Read more

Summary

Introduction

A copolymer’s composition is an important factor in the evaluation of its utility [1,2,3,4]. Controlling the polymer property parameters, such as copolymer composition and sequence distribution and molecular weight averages, is of particular importance in copolymerization processes [2]. In order to calculate the rate of polymerization or polymer productivity and copolymer composition, monomer reactivity ratios must be known [5]. Reactivity ratios are among the most important parameters for the composition equation of copolymers, as they can offer information such as the relative reactivity of monomer pairs and help estimate the copolymer composition [2,3]. The method which is used most often nowadays for estimating monomer reactivity ratios is to perform low conversion copolymerization at various initial monomer feed compositions. Linearization of the copolymer composition equation will distort the error distributions associated with the data

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.