Abstract

Multifunctional naphthalene-containing epoxy resins derived from 2,7-dihydroxylnaphthalene were synthesized and the intermediates were characterized by Fourier transform infrared spectroscopy, elemental analysis, and mass spectrometry. The cured products from naphthalene-containing epoxy resin and the dicyanate ester of bisphenol A (DCBA) exhibited a better Tg and a lower coefficient of thermal expansion than those of the commercial epoxy system. The glass transition temperature, thermal stability, and moisture absorption were found to increase with the epoxy functionality when naphthalene-containing epoxy resins were cured with DCBA. Thermogravimetric analyses revealed that the DCBA-cured system had a better thermal stability than that of the 4,4′-diaminodiphenylsulfone (DDS)-cured system. The addition of a metallic catalyst into the epoxy resin/cyanate ester system not only facilitated the cyclotrimerization of the cyanate ester but also the polyetherification of the epoxy resin. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 73: 1611–1622, 1999

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.