Abstract

ABSTRACTTwo donor−acceptor low band gap polymers P1 (octyl as solubilizing group) and P2 (ethylhexyl as solubilizing group) containing fluorenylthiophene-substituted benzoditihiophene as an electron-rich unit and 3,6-bis(5-bromothiophen-2-yl)-2,5-bis(2-ethylhexyl)pyrrolo[3,4-c]pyrrole-1,4(2H,5H)-dione as an electron-deficient unit are designed and synthesized for polymer solar cells application. Compared with P2 based on ethyl hexyl group, P1 with octyl group displays well resolved vibronic shoulder peak in absorption spectra, stronger intermolecular interactions, and higher hole mobility. Polymer solar cells based on P1 and [6,6]-phenyl-C71-butyric acid methyl ester (PC71BM) exhibit a maximum power conversion efficiency of 1.78% under AM 1.5G illumination (100 mW/cm2).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.