Abstract

In this study, nanostructured cerium-doped TiO2 (Ce-TiO2) films with the addition of different amounts of cerium (0.00, 0.08, 0.40, 0.80, 2.40, and 4.10 wt.%) were deposited on a borosilicate glass substrate by the flow coating sol-gel process. After flow coating, the deposited films were dried at a temperature of 100 °C for 1 h, followed by calcination at a temperature of 450 °C for 2 h. For the characterization of sol-gel TiO2 films, the following analytic techniques were used: X-ray diffraction (XRD), differential thermal analysis (DTA), thermal gravimetry (TG), differential scanning calorimetry (DSC), diffuse reflectance spectroscopy (DRS), and energy dispersive X-ray spectroscopy (EDS). Sol-gel-derived Ce-TiO2 films were used for photocatalytic degradation of ciprofloxacin (CIP). The influence of the amount of Ce in TiO2 films, the duration of the photocatalytic decomposition, and the irradiation type (UV-A and simulated solar light) on the CIP degradation were monitored. Kinetics parameters (reaction kinetics constants and the half-life) of the CIP degradation, as well as photocatalytic degradation efficiency, were determined. The best photocatalytic activity was achieved by the TiO2 film doped with 0.08 wt.% Ce, under both UV-A and solar irradiation. The immobilized catalyst was successfully reused for three cycles under solar light simulator radiation, with changes in photocatalytic efficiency below 3%.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call