Abstract

This study deals with the synthesis of TiO 2 supported Moroccan palygorskite fibers and their use as photocatalyst for the removal of Orange G pollutant from wastewater. The TiO 2-palygorskite nanocomposite synthesis was accomplished according to a colloidal route involving a cationic surfactant as template (hexadecyltrimethylammonium bromide) assuring hence organophilic environment for the formation of TiO 2 nanoparticles. The clay minerals samples were characterized before and after functionalization with TiO 2. Anatase crystallizes above ca. 450 °C and remarkably remains stable up to 900 °C. In contrast, pure TiO 2 xerogel obtained from titanium tetraisopropoxide (TTIP) showed before calcination a nanocrystalline structure of anatase. By increasing the temperature, anatase readily transforms into rutile beyond 600 °C. The remarkable stability at high temperature of anatase particles immobilized onto palygorskite microfibers was due to the hindrance of particles growth by sintering. Homogeneous monodisperse distribution of anatase particles with an average size of 8 nm was found by TEM and XRD onto palygorskite fibers. This anatase particle size remains below the nucleus critical size ( ca. 11 nm) required for anatase–rutile transition. The TiO 2 supported palygorskite sample annealed in air at 600 °C for 1 h exhibits the highest photocatalytic activity towards the degradation of Orange G compared to nanocomposite samples prepared under different conditions as well as pure TiO 2 powders obtained from the xerogel route or commercially available as Degussa P25.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.