Abstract

ABSTRACTAccording to the molecular structure design requirements of the fluid loss additive resistant to high temperature, 2‐acrylamide‐2‐methyl propane sulfonic acid (AMPS), acrylamide (AM), dimethyl diallyl ammonium chloride (DMDAAC) and sodium styrene sulfonate (SSS) are selected as the structure monomers. Using ammonium persulfate as initiator, a new quadripolymer is synthesized through free radical aqueous solution polymerization. According to the minimum filtration loss of the fresh water‐based drilling fluid with 0.5 wt % quadripolymer, The synthesis conditions are optimized by orthogonal test: the mole ratio of AMPS/AM/DMDAAC/SSS is 5/7/2/1, the monomer concentration is 30 wt %, the initiator concentration is 0.8 wt %, the reaction temperature is 75°C and the pH is 10. The structure of the quadripolymer is characterized by Fourier transform infrared spectroscopy and nuclear magnetic resonance hydrogen spectroscopy. The results show that the quadripolymer contains all the designed functional groups. The thermal stability of the quadripolymer is tested by thermogravimetry, differential thermogravimetry, and differential scanning calorimetry. The results show that the thermal degradation of the quadripolymer is not obvious before 272.3°C. The rheological performance and filtration loss of the quadripolymer are evaluated. The results indicate that the filtration loss decreases with the increasing dosage of the quadripolymer before and after thermal aging test at 180°C for 16 h, and the filtration loss before the thermal aging test is smaller than that after the thermal aging test. The high temperature high pressure filtration loss (FL(HTHP)) experiment results also show that the quadripolymer fluid loss additive has excellent temperature‐resistant performance. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015, 132, 41762.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.