Abstract

Boron carbon oxynitride (BCNO) and boron carbon nitrogen (BCN) nanocompounds are successfully synthesized by a solid state sintering method using boric acid, urea and dextrose as the sources of B, N and C respectively under inert atmosphere. X-ray diffraction (XRD) and infrared spectroscopy (FTIR) analysis show that nanomaterials are synthesized at the high temperature range of 1350 °C. Sufficient amount of oxygen impurities are present in the sample, which is manifested in their photoluminescence spectra. Increase in temperature to 1350 °C under N2 atmosphere causes elimination of significant amount of O-species from the system. The presence of ample amount of carbon in the system results in the formation of high amount of polycrystalline h-BCN with minor amount of h-BN. However, some residual oxygen in the sample, which is detected in the FTIR study, leads to the formation of BCNO compound. These semiconductor BCNO compounds act as the potential luminescence centers for the blue-green emissions of the particles. Thus, these materials may find potential application as a phosphor material in various opto-electronic devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.