Abstract

Immobilized-polysiloxane (diamine-thiol) tetraethylacetate, P-(NN-S)-TEA (where P represents [Si–O]n polysiloxane network), was synthesized using one-pot reaction of tetraethylorthosilicate (TEOS) with 3-(ethylenediaminetriethylacetate)propyltrimethoxysilane and 3-thiolethylacetatepropyltrimethoxysilane in the presence of cetyl trimethylammonium bromide (CTAB) as a surfactant. Its ethylenediamine and diethylenetriamine modified polysiloxane (diamine-thiol)-tetrakis(N-2-aminoethylacetamide), P-(NN-S)-TEA-NN, and polysiloxane (diamine-thiol)-tetrakis(N-diethylenediamineacetamide), P-(NN-S)-TEA-NNN chelating ligand systems were also obtained. Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopic (XPS), and thermogravimetric analysis (TGA) techniques have been used for establishing their structures. An elemental CHNX combustion analyzer was used to determine the mass fractions of carbon, hydrogen, nitrogen, and sulfur of samples. The metal uptake capacities results showed that the modified polysiloxane ligand systems exhibited high capacities for the uptake of divalent metal ions in the following order: Cu2+> Pb2+> Ni2+> Co2+.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.