Abstract
Abstract5‐Ethynyl‐2,2′‐bipyridine (1; bpyC≡CH) polymerized in the presence of catalytic amounts of [RhF(COD)(PPh3)] or [Rh(μ‐OH)(COD)]2 (COD = 1,5‐cyclooctadiene) in 74–91% yields. In contrast, [Rh(μ‐X)(NBD)]2 (X = Cl or OMe; NBD = norbornadiene) did not catalyze the polymerization of 1 or gave low yields of the polymer. The obtained polymer, poly(5‐ethynyl‐2,2′‐bipyridine) [2; (bpyCCH)n], was highly stereoregular with a predominant cis–transoidal geometry. Random copolyacetylenes containing the 2,2′‐bipyridyl group with improved solubility in organic solvents were obtained by the treatment of a mixture of 1 and phenylacetylene (3) or 1‐ethynyl‐4‐n‐pentyl‐benzene with catalytic amounts of [RhF(COD)(PPh3)]. A block copolymer of 1 and 3 was prepared by the addition of 1 to a poly(phenylacetylene) containing a living end. The reaction of 2 with [Mo(CO)6] produced an insoluble polymer containing [Mo(CO)4(bpy)] groups, whereas with [RuCl2(bpy)2] or [Ru(bpy)2(CH3COCH3)2](CF3SO3)2, it gave soluble metal–polymer complexes containing [Ru(bpy)3]2+ groups. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43:3167–3177, 2005
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Polymer Science Part A: Polymer Chemistry
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.