Abstract
A series of four porphyrin-peptide conjugates bearing one linear bifunctional sequence containing a cell penetrating peptide (CPP) and a nuclear localization signal (NLS) were synthesized and their in vitro biological and stability properties investigated. All conjugates accumulated within human HEp2 cells to a significantly higher extent than their porphyrin-PEG precursor, and the extent of their uptake and cytotoxicity depends on the nature and sequence of the amino acids. Conjugates 2 and 5 bearing a NLS-CPP accumulated the most within cells and were the most phototoxic (IC50 approximately 7 microM at 1 J/cm2). All conjugates localized preferentially within the cell lysosomes, and in addition, conjugate 2 was also found in the ER. All conjugates were highly stable under nonenzymatic conditions, but their peptide sequences were cleaved to some extent (ca. 50% after 24 h) by proteolytic enzymes, such as cathepsin B, cathepsin D, prolidase, and plasmin.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.