Abstract

ABSTRACTA novel terphenyl liquid crystalline (LC) epoxy resin was synthesized and characterized by 1H‐NMR, Fourier transform infrared spectroscopy, differential scanning calorimetry (DSC), and polarizing optical microscopy. Depending on the curing temperature, the synthesized resin formed both smectic and nematic LC phases. A time‐temperature‐transformation diagram was constructed to optimize the curing process, which helped in the preparation of LC and isotropic system. The terphenyl epoxy resin obtained exhibited higher acid resistance than a comparable Schiff‐base epoxy resin, and also displayed excellent fracture toughness. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015, 132, 41296.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.