Abstract

The ternary transition metal boride Fe2AlB2 is a unique ferromagnetic "MAB" phase that demonstrates a sizable magnetocaloric effect near room temperature-a feature that renders this material suitable for magnetic heat pump devices (MHP), a promising alternative to conventional vapor compression technology. Here, we provide a comprehensive review of the material properties of Fe2AlB2 (magnetofunctional response, transport properties, and mechanical stability) and discuss alloy synthesis from the perspective of shaping these materials as porous active magnetic regenerators in MHPs. Salient aspects of the coupled magnetic and structural phase transitions are critically assessed to elucidate the fundamental origin of the functional response. The goal is to provide insight into strategies to tune the magnetofunctional response via elemental substitution and microstructure optimization. Finally, outstanding challenges that reduce the commercial viability of Fe2AlB2 are discussed, and opportunities for further developments in this field are identified.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.