Abstract

The present study is to synthesize iron oxide nanoparticles on different polysaccharide templates calcined at controlled temperature, characterizing them for spectroscopic and magnetic studies leading to evaluate their antibacterial property. The synthesized iron oxide nanoparticles were characterized by X-ray diffractometer (XRD), Fourier transform infrared spectroscopy, high resolution scanning electron microscopy (HRSEM), high resolution transmission electron microscopy (HRTEM) and vibrating sample magnetometer. The iron oxide nanoparticles were tested for antibacterial activity against gram-positive and gram-negative bacterial species. The XRD confirms the crystalline nature of iron oxide nanoparticles with the mean crystallite size of 10 nm. The functional groups of the synthesized iron oxide nanoparticles were 547, 543 and 544 cm–1 characterizing the Fe–O and the broad bands at 3,398, 3,439 and 3,427 cm–1 were attributed to the stretching vibrations of hydroxyl group absorbed by iron oxide nanoparticles. HRTEM analyses revealed that the average particle size of the hematite nanoparticles are about 85, 92 and 77 nm for AF, DF and GF, respectively, which was a coincident with the results obtained from the HRSEM analysis. Magnetic measurement exhibited ferromagnetic behavior of the α-Fe2O3 at the room temperature with higher coercivity of HC = 2,303, 2,333 and 1,019 Oe for AF, DF and GF, respectively. Antibacterial test showed the inhibition against Aeromonas hydrophila and Escherichia coli with significant antagonistic activity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.