Abstract

Oligo-2-[(4-bromophenylimino)methyl]phenol (OBPIMP) was synthesized from the oxidative polycondensation reaction of 2-[(4-bromophenylimino)methyl]phenol (BPIMP) with air and NaOCl oxidants in an aqueous alkaline medium between 50 and 90°C. The yield of OBPIMP was found to be 67 and 88% for air and NaOCl oxidants, respectively. Their structures were confirmed by elemental and spectral such as IR, ultraviolet–visible spectrophotometer (UV–vis), 1H-NMR, and 13C-NMR analyses. The characterization was made by TG-DTA, size exclusion chromatography, and solubility tests. The resulting complexes were characterized by electronic and IR spectral measurements, elemental analysis, AAS, and thermal studies. According to TG analyses, the weight losses of OBPIMP, and oligomer-metal complexes with Co+2, Ni+2, and Cu+2 ions were found to be 93.04%, 59.80%, 74.23%, and 59.30%, respectively, at 1000°C. Kinetic and thermodynamic parameters of these compounds investigated by Coats-Redfern, MacCallum-Tanner, and van Krevelen methods. The values of the apparent activation energies of thermal decomposition (Ea), the reaction order (n), preexponential factor (A), the entropy change (ΔS*), enthalpy change (ΔH*), and free energy change (ΔG*) obtained by earlier-mentioned methods were all good in agreement with each other. It was found that the thermal stabilities of the complexes follow the order Cu(II) > Co(II) > Ni(II). © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.