Abstract

There has been little study on the effect of composition or molecular weight on the biodegradation rate of photo-cross-linked biodegradable aliphatic polyesters though such information is important for tissue engineering scaffolds. We have synthesized a new series of photopolymerizable linear poly(epsilon-caprolactone-co-lactide-co-glycolide) diacrylates with different molecular weights (Mn = 1800, 4800, and 9300 Da) and compositions (20%, 40%, and 60% epsilon-CL) and studied their biodegradation rates. The resultant oligomers were amorphous and appeared as viscous liquids at room temperature. Liquid-to-solid polymerization was carried out by UV irradiation in the presence of a photoinitiator. The photocuring yield was high (greater than 95%), and the photo-cross-linked polymers were amorphous and rubbery. Mechanical measurements showed that the polymers can be stretchable or rigid; the high molecular weight/low epsilon-CL network has a strain of 176% and a modulus of 1.66 MPa while the low molecular weight/high epsilon-CL network has a strain of 21% and a modulus of 12.3 MPa. In a 10 week in vitro biodegradation study, the polymers exhibited a two-stage degradation behavior. In the first stage, the polymer weight and strain remained almost constant, but a linear decrease in the Young's modulus (E) and ultimate stress (sigma) were observed. Lower oligomer molecular weight or epsilon-CL content correlated with a faster decrease in Young's modulus. In the second stage, which began when the Young's modulus dropped below 1 MPa, there was rapid weight loss and strain increase. The lower the epsilon-CL content, the earlier the second stage happened. Low molecular weight and high epsilon-CL content correlated with a longer modulus half-life (time for the modulus to degrade to 50% of its initial value). The degradation results suggest principles that may be helpful in predicting the biodegradation behavior of similar polymeric cross-linked networks. Films formed from these new polymers have excellent biocompatibility with smooth muscle cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.