Abstract

AbstractThe aim of the present investigation is to synthesize mixed sodium potassium alanate (K2NaAlH6) and to explore its hydrogen sorption characteristics. K2NaAlH6 is synthesized through ball milling of KH and NaAlH4 in the molar ratio 2:1 under hydrogen pressure of 10 bar. The temperature programmed desorption experiment shows that the synthesized K2NaAlH6 has peak desorption temperature of ∼352°C and reveals appreciable rehydrogenation kinetics under 6 bar hydrogen pressure at 300°C. The investigations are also focused on the catalytic effect of carbon nanostructures (CNS) namely, the graphene sheet (GS) and single wall carbon nanotube (SWCNT) and titanium halides (TiCl3 and TiF3) on K2NaAlH6. In the case of graphene and SWCNT catalyzed K2NaAlH6, the peak desorption temperature gets reduced to ∼347°C and ∼341°C respectively. The catalytic effects of CNS and titanium halide on K2NaAlH6 are also compared in the investigation. Between the two types of catalysts, halides are found to be better than CNS and out of the two halides, TiF3 is found to be the best catalyst for hydrogen sorption in K2NaAlH6. The peak desorption temperature decreases significantly from 352°C to ∼324°C for TiF3 catalyzed K2NaAlH6. Thus, the desorption activation energy reduces drastically from 124.43 kJ/mol (synthesized K2NaAlH6) to 88.05 kJ/mol for TiF3 catalyzed K2NaAlH6.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call