Abstract

Tungsten oxide nanorods were synthesized by a soft chemistry approach using tungsten alkoxide and trioctyl amine and oleic acid as the surfactants. The optical properties of the nanorods were studied. The nanorods were found to be soluble in a wide range of solvents like chloroform, cyclohexane, and so on. Upon solvent evaporation, the nanorods formed hierarchically organized solid state structures. Depending on the solvent used, the nanorods organized in different mesostructures. Moreover, the organization of the nanorods from mixtures of polar and nonpolar solvents was studied. Here, the Marangoni effect resulting from differences in the surface tensions of the two solvents was found to play a role in the organization of the nanorods. Furthermore, dip coating of the nanorod solutions on a mica substrate resulted in the formation of a uniform thin film of the nanorods, which may be useful for a variety of applications such as in electrochromic devices and in organic light emitting devices (OLEDs) using tungsten oxide as a buffer layer.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.