Abstract

A novel approach was employed to synthesize porous NiO nanotubes with controllable interior voids based on an effective interplay of Kirkendall effect and volume change upon phase transformation. For this purpose, nickel nanowires were chemically converted into Ni3S2/Ni core–shell structures, followed by a controlled oxidation, whereby the associated volume change (Ni → NiO conversion) resulted in 1D porous structure with voids. The voids between the Ni core and Ni3S2 shell could be controlled by adjusting the oxidation conditions that enabled fabrication of hollow and double-walled morphologies. Phase composition, morphological evolution, and porosity of double-walled NiO nanotubes were analyzed by X-ray diffraction, scanning and transmission electron microscopy, and N2 adsorption–desorption studies. Gaseous sulfur oxides formed during the oxidation of Ni3S2/Ni structures resulted in a perforated structure with multiple voids with pores ranging between 1 and 14 nm. The unique complex structure with the i...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call