Abstract

The use of semiconductor oxides, such as chemical or biological sensors, requires their functionalization with appropriate molecules displaying specific interaction with the substance to be detected.Generally, the support materials used are TiO2 or SiO2. In the present work, zinc oxide nanoparticles (ZnO NPs), known for its reactivity and high specific area, were used. The synthesis of nanoscale ZnO was advantageously performed by precipitation at low temperature (60°C). To our knowledge, it was the first time that this material was synthesized at such a low temperature, therefore lowering production cost. Moreover, the surface functionalization of ZnO was performed with N-(trimethoxysilylpropyl) ethylenediamine triacetic acid (TMSEDTA) in ethanol. This allowed shortening the functionalization reaction duration as compared to previously published literature in the field. The samples obtained were analyzed by XRD, TEM, DLS, FTIR, TGA and XPS, which all concur with the successful synthesis of ZnO nanoparticles as well as the efficiency of TMSEDTA grafting on ZnO.Then, the interactions of this functionalized material, ZnO@TMSEDTA, with the Phloroglucinol (drug) were evaluated by using cyclic voltammetry measurements in solution. The cyclic voltammograms showed an intense cathodic peak which was correlated to the initial concentration of free Phloroglucinol. This cathodic peak was degraded upon addition of ZnO@TMSEDTA particles due to the drug interactions with free available carboxylic groups on the functionalized NPs. Based on a calibration curve, the drug concentration uptake can be therefore quantified. Thus, these results establish a big step to develop a Phloroglucinol sensor.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.