Abstract

Two aryl amide ligands, N-(p-tolyl)-2-(quinolin-8-yloxy)acetamide (L1 ) and N-(4-chlorophenyl)-2-(quinolin-8-yloxy)acetamide (L2 ), were synthesized. With these ligands, two series of lanthanide(III) complexes were prepared, Ln(L n )2(NO3)3 (n = 1, 2; Ln = La, Sm, Eu, Gd, Dy), and characterized by the elemental analyses, molar conductivity, 1H NMR spectra, IR spectra and TG-DTA. The fluorescence properties of the complexes and the triplet state energies of the ligands were studied in detail. In addition, the quantum yields of both Eu(III) complexes and Eu(L0)2(NO3)3 [where L0 is N-(phenyl)-2-(quinolin-8-yloxy)acetamide] 1 were calculated. The results indicate that among the lowest triplet energies (T) of the three ligands, that of L2 is most suitable to the resonance level (5D1) of Eu(III) ion. Furthermore, Eu(L2)2(NO3)3 has the highest fluorescence intensity and quantum yield of the three Eu(III) complexes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call