Abstract

Novel transition-metal borides have attracted considerable attention because they exhibit high stability under extreme conditions. Compared with binary borides, ternary transition-metal borides (TTMBs) exhibit novel boron substructures and diverse properties, which result in excellent designability. In this study, we synthesized the MAB-like (where M = iron, A = molybdenum, and B = boron) phase Fe(MoB)2 using a high-pressure and high-temperature method. Fe(MoB)2 exhibited ferromagnetic metastable characteristics with a saturation magnetization of 8.35 emu/g at room temperature. Microhardness measurement revealed an indentation hardness of 10.72 GPa, which was higher than those of conventional magnetic materials. First-principles calculations revealed excellent mechanical properties, which mainly originated from the strong covalent short B2 chains. Furthermore, magnetism was attributed to the Fe 3d electrons. Numerous d-d hybridizations existed between the Fe 3d eg and Mo 4d orbitals, and the antibonding/nonbonding state difference for up/down-spin electrons in the hybridization orbitals led to the local magnetic moment of Fe(MoB)2. The magnetic anisotropy energy analyses reveal that Fe(MoB)2 prefers the easy magnetization axis along the z direction, and Mo atom acts as a medium to realize the exchange action between two Fe atoms. The B-B and Fe-B bonds were considerably stronger than the Fe-Mo and Mo-B bonds, and Fe(MoB)2 exhibited a class of atomically laminate composed of FeB2 and Mo layers. These results may provide guidance for the design of novel multifunctional TTMBs by adjusting the interactions between binary metal components.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call