Abstract

Radiation-induced enteropathy is a major clinical challenge during radiotherapy. Resveratrol displays beneficial pharmacological activities; however, low oral bioavailability limits its effectiveness. This study aims at preparing methacrylic acid (MAAc) functionalized multi-walled carbon nanotubes (MWCNTs-MAAc) as carriers for pH triggered controlled release of resveratrol in an effort to improve the drug therapeutic potential. MWCNTs-MAAc were prepared using radiation technique and then characterized by transmission electron microscopy (TEM), dynamic light scattering (DLS), scanning electron microscope (SEM), X-ray diffraction (XRD) and Fourier transform-infrared (FT-IR) spectroscopy. In vitro drug release profile at different pH values was analyzed. Furthermore, the designed RES-MWCNTs-MAAc nanocomplex was evaluated against radiation-induced enteropathy in rats. Oral administration of RES-MWCNTs-MAAc restored colonic redox state and elevated antioxidant enzymes activities glutathione peroxidase (GPx), superoxide dismutase (SOD) and catalase (CAT) and reduced colonic inflammatory mediators tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β) and interferone-γ (IFN-γ) contents in addition to declining the intrinsic apoptotic pathway as evidenced by down-regulation of Bax and caspase-3 proteins expression accompanied by up-regulation of Bcl-2 protein expression. RES-MWCNTs-MAAc was more efficient than free resveratrol due to the delivery system that allowed prolonged resveratrol release at target site. Thus, this formulation could serve as a beneficial anti-inflammatory approach for patients during radiotherapy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call