Abstract

To synthesize, characterize and evaluate the antitumor potential derived from ruthenium compounds was generated in this study, from the precursor K[RuCl4(bipy)] a route in a simple and reproducible synthesis for a novel compound of coordinating Ru+3 with bipy and L-trip. The spectroscopic characterization in the middle infrared region (FTIR) shows the interactions between Ru-(L-trip), evidenced by the displacement of the carboxylate ion band for higher energies, and also by the displacements of aliphatic amine bands, suggesting that bidentate coordination of the L-trip ligand occurred. Analysis of the results obtained with thermoanalytical techniques showed that the minimum formula of the compound, [RuCl2(bipy)(L-trip)]1/2H2O. Evaluation of the antitumor potential of precursor K[RuCl4(bipy)] showed the toxic effects on MCF-7 cell line, but did not show selectivity and not reached PBMC cells to the same extent. The evaluation of the antitumor potential of the newly synthesized compound, [RuCl2(bipy)(L-trip)], demonstrated that the insertion of an L-tryptophan molecule into the precursor coordination sphere made it selective when compared to PBMC cells, for MCF-7 type tumor cells.

Highlights

  • From the studies conducted by Rosenberg and colleagues [1] [2] [3], platinum-based coordination compounds are among the most used drugs in the treatment of cancer

  • Characterize and evaluate the antitumor potential derived from ruthenium compounds was generated in this study, from the precursor K[RuCl4(bipy)] a route in a simple and reproducible synthesis for a novel compound of coordinating Ru+3 with bipy and L-trip

  • The evaluation of the antitumor potential of the newly synthesized compound, [RuCl2(bipy)(L-trip)], demonstrated that the insertion of an L-tryptophan molecule into the precursor coordination sphere made it selective when compared to PBMC cells, for MCF-7 type tumor cells

Read more

Summary

Introduction

From the studies conducted by Rosenberg and colleagues [1] [2] [3], platinum-based coordination compounds are among the most used drugs in the treatment of cancer. Since studies by Rosenberg and colleagues platinum-derived coordination compounds have been among the most widely used drugs in cancer treatment [4]. These compounds exhibit high toxicity, leading patients to present some side effects such as high nephrotoxicity, nausea, vomiting, anorexia, ototoxicity, neurotoxicity and develop resistance to drugs [4] [5] [6]. Research involving ruthenium-derived compounds as drugs in the treatment of malignant neoplasms has shown promise [7] [8]. This class of compounds presents characteristics such as considerable cytotoxicity, antimetathesis properties and low toxicity when compared to platinum derived compounds

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.