Abstract

Five star polymers of the ionizable hydrophilic 2-(dimethylamino)ethyl methacrylate (DMAEMA) and the nonionic hydrophilic methoxy hexa(ethylene glycol) methacrylate (HEGMA) were prepared by group transfer polymerization (GTP) using ethylene glycol dimethacrylate (EGDMA) as coupling agent. In particular, four isomeric star copolymers, one heteroarm, two star block and one statistical star, with 90% mol DMAEMA and 10% mol HEGMA, plus one star homopolymer of DMAEMA with degrees of polymerization of the arms equal to 20 were synthesized. The polymers were characterized in terms of their molar masses (MMs) and compositions using gel permeation chromatography (GPC) and proton nuclear magnetic resonance (1H NMR) spectroscopy, respectively. The hydrodynamic diameters in water indicated some aggregation for all the star polymers except for the statistical copolymer star, while the pK values of the DMAEMA units were around 7 for all star polymers. All the star polymers were evaluated for their ability to transfect human cervical HeLa cancer cells with the modified plasmid pRLSV40 bearing the enhanced green fluorescent protein (EGFP) as the reporter gene. All four star copolymers showed decreased toxicity compared to that of the DMAEMA star homopolymer for the same amounts of star polymer tested. The star block copolymer with outer DMAEMA blocks exhibited the highest overall transfection efficiency, 11%, compared to that of all the star polymers examined in this study. This efficiency was the same as that of the commercially available transfection reagent SuperFect.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call