Abstract

A series of 1-(2,6-dimethyl-4-fluorenylphenylimino)-2-aryliminoacenaphthylene compounds (aryl = 2,6-di(Me)Ph (L1), 2,6-di(Et)Ph (L2), 2,6-di(i-Pr)Ph (L3), 2,4,6-tri(Me)Ph (L4), 2,6-di(Et)-4-MePh (L5)) was prepared and used to form their corresponding dibromonickel complexes (D1–D5). Both L1–L5 and D1–D5 were fully characterized by FT-IR and elemental analysis as well as NMR measurements in the case of ligands L1–L5. The molecular structure of the representative complex D5 was confirmed by single crystal X-ray diffraction revealing a distorted trigonal bipyramidal geometry around the nickel center. On activation with either ethylaluminium sesquichloride (Et3Al2Cl3, EASC) or methylaluminoxane (MAO), all nickel complexes exhibited high activities up to 9.82 × 106 g of PE (mol of Ni)−1 h−1 for ethylene polymerization. In comparison with the polyethylenes obtained with related Ni pre-catalysts, the polyethylenes obtained in this work possessed relatively higher molecular weights and lower levels of branching, highlighting the significant influence of the remote fluorenyl substituent.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.