Abstract

Biochar has attracted much research attention recently because of its potential applications in many environmental areas. In this work, the biochar technology was combined with the emerging graphene technology to create a new engineered graphene-coated biochar from cotton wood. The biomass feedstock was first treated with graphene/pyrene‐derivative and was then annealed at 600°C in a quartz tube furnace under N2 environment. Laboratory characterization with different microscopy and spectrometry tools showed that the graphene sheets were “soldered” by the pyrene molecules on the biochar surface during the annealing process. Thermogravimetric analysis showed that the graphene “skin” could improve the thermal stability of the biochar, making the engineered biochar a better carbon sequester for large scale land applications. Batch sorption experimental results indicated that the graphene-coated biochar has excellent adsorption ability of polycyclic aromatic hydrocarbons (PAHs) with a maximum methylene blue adsorption capacity of 174mgg−1, which is more than 20 times higher than that of the unmodified cotton wood biochar and comparable to those of some physically or chemically activated carbons. The enhanced adsorption of methylene blue on the graphene-coated biochar is mainly controlled by the strong π–π interactions between aromatic molecules and the graphene sheets on biochar surface. It is anticipated that this novel, facile, and low-cost method can be expanded to other carbon-rich materials to create engineered biochar for various environmental applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.