Abstract
This study reports the successful synthesis and comprehensive characterization of ZrO2:Dy3+ phosphors with the incorporation of K+ ions. The introduction of Dy3+ and K+ in the ZrO2 lattice as lanthanide activators demonstrates its potential as an efficient host material. The structural integrity of ZrO2 remains unaltered following the doping process. Fourier-transform infrared spectroscopy (FTIR) analysis confirms the presence of Zr-O and O-H stretching, along with H2O bending modes in the phosphor sample. The wide luminescence band seen at 460 nm is attributed to luminescence defects in the ZrO2 induced by oxygen, and the presence of water molecules. Photoluminescence (PL) spectra analysis reveals pronounced emission peaks at 491 and 578 nm, corresponding to 4F9/2 → 6H15/2 and 4F9/2 → 6H13/2 transitions, respectively, upon excitation at 349 nm. Optimizing the Dy3+ doping concentration to 0.4 wt% and achieving a critical distance of 31.82 Å resulted in efficient energy transfer. Notably, co-doping K+ as a charge compensator significantly enhances the luminescence intensity. Moreover, at lower temperatures, direct excitation of Dy3+ ions through our pump wavelength, coupled with exciton-mediated energy transfer, leads to a remarkable increase in PL intensity. Tailoring the doping concentrations effectively shifts the emission spectrum of the phosphor mixture, aligning with the standard white light illumination coordinates (0.333, 0.333). This property positions the material as a promising candidate for applications in white light-emitting diodes (WLEDs) and various high-quality lighting applications. The enhanced photoluminescence and temperature dependence observed in ZrO2:Dy3+ phosphors upon the incorporation of K+ ions pave the way for their potential utilization in advanced luminescent devices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.